Cross $i$-sections of star bodies and dual mixed volumes
نویسندگان
چکیده
منابع مشابه
Star Valuations and Dual Mixed Volumes
Since its creation by Brunn and Minkowski, what has become known as the Brunn Minkowski theory has provided powerful machinery to solve a broad variety of inverse problems with stereological data. The machinery of the Brunn Minkowski theory includes mixed volumes (of Minkowski), symmetrization techniques (such as those of Steiner and Blaschke), isoperimetric inequalities (such as the Brunn Mink...
متن کاملSections of Star Bodies and the Fourier Transform
A new approach to the study of sections of star bodies, based on methods of Fourier analysis, has recently been developed. The idea is to express certain geometric properties of bodies in terms of the Fourier transform and then apply methods of harmonic analysis to solve geometric problems. This approach has already led to several results including an analytic solution to the Busemann-Petty pro...
متن کاملAsymptotics of Cross Sections for Convex Bodies
For normed isotropic convex bodies in R n we investigate the behaviour of the (n ? 1)-dimensional volume of intersections with hyperplanes orthogonal to a xed direction, considered as a function of the distance of the hyperplane to the origin. It is a conjecture that for arbitrary normed isotropic convex bodies and random directions this function { with high probability { is close to a Gaussian...
متن کاملDual Mixed Volumes and the Slicing Problem
We develop a technique using dual mixed-volumes to study the isotropic constants of some classes of spaces. In particular, we recover, strengthen and generalize results of Ball and Junge concerning the isotropic constants of subspaces and quotients of Lp and related spaces. An extension of these results to negative values of p is also obtained, using generalized intersection-bodies. In particul...
متن کاملThe mixed L p - dual affine surface area for multiple star bodies
Associated with the notion of the mixed Lp-affine surface area for multiple convex bodies for all real p (p 6= −n) which was introduced by Ye, et al. [D. Ye, B. Zhu, J. Zhou, arXiv, 2013 (2013), 38 pages], we define the concept of the mixed Lp-dual affine surface area for multiple star bodies for all real p (p 6= −n) and establish its monotonicity inequalities and cyclic inequalities. Besides, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2007
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-07-08997-6